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Abstract The margins of fast-moving ice streams are characterized by steep velocity gradients. Some
of these gradients cannot be explained by a temperature-dependent viscosity alone. Laboratory data
suggest that water in the ice-grain matrix decreases the ice viscosity; we propose that this causes the strong
localization of shear in temperate ice stream margins. However, the magnitude of weakening and its
consequences for ice stream dynamics are poorly understood. Here we investigate how the coupling
between temperate ice properties, ice mechanics, and drainage of melt water from the ice stream margin
alters the dynamics of ice streams. We consider the steady-state ice flow, temperature, water content, and
subglacial water drainage in an ice stream cross section. Temperate ice dynamics are modeled as a
two-phase flow, with gravity-driven water transport in the pores of a viscously compacting and deforming
ice matrix. We find that the dependence of ice viscosity on meltwater content focuses the temperate ice
region and steepens the velocity gradients in the ice stream margin. It provides a possible explanation for
the steep velocity gradients observed in some ice stream shear margins. This localizes heat dissipation
there, which in turn increases the amount of meltwater delivered to the ice stream bed. This process is
controlled by the permeability of the temperate ice and the sensitivity of ice viscosity to meltwater content,
both of which are poorly constrained properties.

1. Introduction
Ice stream shear margins mark the transition from the fast flow of an ice stream to the slow flow of neigh-
boring ice ridges. This transition occurs over a distance of a few ice thicknesses, as seen, for example, in
Figure 1. This leads to high strain rates and intense heat dissipation (Echelmeyer et al., 1994; Raymond,
1996; Schoof, 2004) and can cause the formation of temperate ice (Haseloff et al., 2015, 2018; Jacobson &
Raymond, 1998; Meyer & Minchew, 2018; Schoof, 2012; Suckale et al., 2014). Further addition of dissipated
heat to the temperate ice leads to melting within the ice matrix.

The fast sliding of ice streams is enabled by water at the bed, which weakens the ice stream bed and/or pro-
motes slip at the ice-bed contact. The water content of the bed is controlled by the basal energy balance—in
particular, by a competition between basal heat dissipation, geothermal heating, and conductive cooling
(e.g., Beem et al., 2010; Christoffersen et al., 2014; Raymond, 2000). In the presence of temperate ice, we
expect this energy balance to be altered in two ways: directly by the addition of meltwater draining from the
temperate ice region to the bed and indirectly through thermo-mechanical coupling between the meltwater
content of the marginal ice and enhanced ice deformation. In this study, we investigate how these processes
change the steady-state flow and the production and distribution of meltwater.

Recent progress in the theory of temperate ice physics (Aschwanden et al., 2012; Hewitt & Schoof, 2017;
Schoof & Hewitt, 2016) provides a framework to describe gravity-driven percolation of meltwater through
the temperate ice matrix. However, there are few experimental measurements of the physical properties that
control the system. Some data show that the viscosity of ice decreases sharply with meltwater content in the
ice (Duval, 1977), but these experiments remain unrepeated and cover only a small part of the expected range
of meltwater content within an ice sheet. Very little experimental data exist to constrain the permeability
of temperate ice, which controls how fast meltwater drains from the ice, or the compaction viscosity of ice
(also referred to as bulk viscosity), which controls the resistance of the ice matrix to compaction. Therefore,
we study the sensitivity of ice stream dynamics to these properties over a broad range of values.

The extent of the temperate ice region in a shear margin depends on the mechanics of the transition between
fast and slow moving ice; different models have been proposed to describe this transition. Common to all
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Figure 1. Examples of ice stream profiles. Panel a shows velocity map of the Siple Coast, with the location of the two
profiles in panels b and c marked with black lines. Gray shading indicates the Ross ice shelf. Panel b1 shows surface
elevation and bed across Whillans ice stream, and panel b2 shows the surface velocity across the same profile. Panel c1
shows surface elevation and bed across MacAyeal ice stream, and panel c2 shows the surface velocity across the same
profile. The parameter values used to obtain the fitted surface and bed profile in panel b1 are listed in Table 1. Figure
generated with Antarctic Mapping Tools and Quantarctica (Greene et al., 2017; Matsuoka et al., 2018) with velocity
data from Rignot et al. (2011, 2017) and bed/surface elevation data from Fretwell et al. (2013).

of these models is the assumption that this transition is related to a change in basal yield stress. Subglacial
sediments underlying ice streams deform plastically (Tulaczyk et al., 2000a), and hence, slip is possible only
when the basal shear stress reaches the yield stress of the bed 𝜏c.

Models linking the basal yield stress to physical processes can be divided into two categories. In the first, 𝜏c
is a function of temperature, in which case the transition from slip to no slip is linked to a transition from
a temperate to a frozen bed (Haseloff et al., 2015, 2018; Jacobson & Raymond, 1998; Schoof, 2012). In the
second, 𝜏c is a function of the water pressure in the subglacial sediment, in which case the transition from
slip to no slip is hydrologically controlled (Elsworth & Suckale, 2016; Kyrke-Smith et al., 2014, 2015; Meyer
et al., 2018; Perol et al., 2015; Platt et al., 2016).

The basal yield stress can be linked to the water pressure in the bed through a relationship of the form 𝜏c(N)
with 𝜕𝜏c/𝜕N > 0 where the effective pressure N is the difference between the normal stress at the bed and the
water pressure (e.g., Tulaczyk et al., 2000a; Bougamont et al., 2003). One mechanism proposed to strengthen
the bed invokes subglacial channels in ice stream shear margins (Elsworth & Suckale, 2016; Meyer et al.,
2018; Perol et al., 2015; Platt et al., 2016). These channels operate at low water pressure and draw in water
from the surrounding bed. This increases the effective pressure N locally around the channel, which leads
to a strengthening of the bed there.

Less attention has been given to a second hydrological mechanism by which the bed can be locally strength-
ened: Many ice streams flow in topographic lows and are bordered by ice ridges. Two examples of this
behavior are shown in Figure 1. An increase in bed elevation and/or surface elevation causes an increase in
effective pressure and hence an increase in bed strength, promoting a transition from yielded to unyielded
bed. This is a simplified description of the mechanism that stabilizes ice stream margins in the numerical
simulations of Kyrke-Smith et al. (2014, 2015). Observations show that both ice ridges and bed troughs are
present in parts of the Siple Coast (Fretwell et al., 2013).

Our goal is to investigate the effect of temperate ice physics on ice stream dynamics. We focus on
ridge-/topography-controlled shear margins by coupling a thermo-mechanical model for an ice stream cross
section to a simple hydrological model, and to a model for temperate ice. The rheology of the temperate ice
accounts for weakening due to meltwater in the ice matrix. The model is described in section 2. In section 3
we demonstrate that the coupling between the temperate ice physics and the viscosity of ice leads to a strong
localization of shear in temperate ice stream margins and an enhanced meltwater flow from the ice to the
bed. We discuss our results in section 4.
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Figure 2. Sketch of the model geometry. We consider an ice stream of width 2Ws bordered by ridges of width
2(W − Ws). The bed elevation is zb, and the ice thickness is H. We assume symmetry about the ice stream and ridge
centers, so that we only need to model processes in the hatched area.

2. The Model
We use a simplified model setup that captures the main aspects of the ice stream cross sections shown in
Figure 1, without attempting to directly fit observations. Specifically, we consider an ice stream bordered by
ice ridges on both sides, as in Figure 2. The x coordinate is aligned with the principal direction of ice stream
flow, y is in the lateral direction, and z points vertically upward. We assume mirror symmetry about the ice
ridge and ice stream centers, and we locate the ice stream center at y = 0 and the ice ridge centers at y = ±W.
The ice stream shear margin, the transition between ice stream and ice ridge, is at y = ±Ws. Consequently,
the ice stream has width 2Ws, and the ice ridge width is 2(W − Ws).

Gradients in the downstream direction (𝜕∕𝜕x) are generally smaller than in the lateral and vertical direc-
tions, and therefore, we neglect or parametrize these. We obtain an essentially two-dimensional model that
only considers processes in y-z plane. If we also neglect advection and lateral diffusion of heat, as we will do
for most of this study, we can further reduce the model to a quasi-one-dimensional, depth-integrated model
in the across-stream (y) direction. While this model reduction allows us to focus on the relevant physical
processes, neglecting lateral advection might substantially alter the extent of the temperate ice region, par-
ticularly in the presence of ice ridges (Haseloff et al., 2018; Jacobson & Raymond, 1998; Suckale et al., 2014).

Table 1
Top: Geometric and Climatic Model Parameters, Obtained From a Fit of the Velocity and Ice
Thickness Profile of the Shear Margin of Whillans Ice Stream, Marked with B1 in Figure 1

Description Symbol Value Units
Accumulation rate .a 0.05 m year−1

Flow parameter Ā0 2.5 × 10−25 Pa−3 s−1

Surface slope sin 𝛼 10−3

Reference thickness of ice stream Hc 927.6 ma

Geothermal heat flux qgeo 70 × 10−3 W m−2

Surface temperature Ts −26.5 ◦ C
Reference center velocity of ice stream uc 650 m year−1

Ice stream half width Ws 27 km
Half width of model domain W 50.3 km
Bed parameter z0 −727.6 m
Bed parameter z4 200.9 m
Excess meltwater parameter q0 m s−1

Hydrological potential in ice stream center Φc Pa

Note. The surface temperature Ts is taken from Alley and Bentley (1988). q0 and𝛷c are free
parameters in the model, determined from matching the boundary conditions (8) and (14).
aNote that in Figure 3 we use Hc = 1,004 m for Example 2 and Hc = 827.2 m for Example 3.
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Table 2
Constants in the Model

Description Symbol Value Units
Drainage parameter a 3
Dynamic viscosity of water 𝜂w 1.8 × 10−3 Pa s
Heat capacity cp 2 × 103 J kg−1 K−1

Acceleration due to gravity g 9.81 m s−2

Reference sediment thickness hw 1 m
Thermal conductivity k 2.3 W m−1 K−1

Hydraulic permeability of the sediment kd between 10−19 and 10−13 m2

Permeability constant of temperate ice kw between 10−12 and 10−8 m2

Latent heat of fusion Lh 330 × 103 J kg−1

Friction coefficient 𝜇 0.5
Viscosity exponent n 3
Reference effective pressure N0 106 Pa
Permeability exponent 𝜈 between 2 and 3
Gas constant R 8.314 J mol−1 K−1

Density of ice 𝜌 910 kg m−3

Density of water 𝜌w 1000 kg m−3

Melting point temperature Tm 273.15 K

Note. The values of the permeability constants kw and 𝜈 are taken from Schoof and Hewitt (2016) but
are largely uncertain. Values for hydraulic permeability of subglacial till kd from Leeman et al. (2016).

In section 4 we therefore compare the temperature fields with and without advection. We present the
reduced model here; the model with lateral and vertical advection of heat is described in Appendix B.

We are specifically interested in ice streams whose flow is affected by bed topography or the existence of an
ice ridge. For the examples in this paper, we use a cross-stream bed profile

zb = z0 + z4

(
𝑦

W

)4
, (1)

which we obtained by fitting the bed of Whillans Narrows across the shear margin marked as B1 in Figure 1.
The parameters z0, z4, and W are listed in Table 1. The bed might additionally have a slope in the downstream
direction, but it is not necessary to specify this.

Since we only model processes in the y-z plane, we cannot model the emergence of ice streams and ice ridges,
as, for example, in Kyrke-Smith et al. (2014). Instead, we assume the existence of an ice stream and adopt
the following approximate profile for the ice thickness H (Haseloff et al., 2015):

H + zb = s0 = const. for |𝑦| ≤ Ws, (2a)

− 2
n + 2

(𝜌g)n 𝜕

𝜕𝑦

(
Ā0Hn+2||||𝜕(H + zb)

𝜕𝑦

||||
n−1

𝜕(H + zb)
𝜕𝑦

)
= .a for Ws ≤ |𝑦| ≤ W , (2b)

with H ice thickness, 𝜌 the density of ice, g the acceleration due to gravity, n the viscosity exponent in Glen's
flow law, Ā0 the flow parameter of ice, and .a the accumulation rate. We list the values of model constants in
Table 2.

Equation (2a) describes an ice stream that is flat in the across-stream direction; that is, its surface elevation
s0 does not change with y (Haseloff et al., 2015). Equation (2b) is a standard shallow ice profile and is the
appropriate equation for a steady-state ice ridge losing its mass to an ice stream (Haseloff et al., 2015; Hutter,
1983; Morland & Johnson, 1980). The boundary conditions are continuity of ice thickness across the ice
stream shear margin and symmetry about the ice ridge center:

H + zb = s0 at|𝑦| = Ws and
𝜕(H + zb)

𝜕𝑦
= 0 at|𝑦| = W . (3)
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Our goal is to investigate the dependence of the ice stream dynamics on both temperature T and volu-
metric meltwater fraction 𝜙. We take both of these effects into account by using (Cuffey & Paterson, 2010;
Duval, 1977)

A(T, 𝜙) = Am

{
exp

[
−Qc

R

(
1
T
− 1

Tm

)]
if T ≤ Tm, 𝜙 = 0

1 + 235𝜙 if T = Tm, 𝜙 > 0
, (4)

with Am = 2.47×10−24 Pa−3 s−1, R the gas constant, 𝜙 the meltwater fraction (or equivalently porosity), and

Qc =
{

60 × 103J mol−1 if T < 263K
115 × 103J mol−1 if T ≥ 263K.

(5)

The values for cold ice (𝜙 = 0) are based on the recommendations by Cuffey and Paterson (2010) Chapter 3,
where we ignore the pressure dependence of the melting point. For temperate ice, we adapt the linear fit
of the data by Duval (1977) given in Cuffey and Paterson (2010) Chapter 3, which recommends A = Am ×
(1.3 + 235𝜙) Pa−3 s−1. By changing the intercept to Am, we ensure that A is a continuous function of T and
𝜙. Note, however, that this likely underestimates the water-softening effects of temperate ice described in
section 3; we take (4) as a conservative estimate.

2.1. Ice Flow
We consider ice streams sliding along a bed with yield stress 𝜏c. In this case, the downstream velocity u in the
x direction can be described by a typical “shallow” ice stream formulation (Haseloff et al., 2015; MacAyeal,
1989; Muszynski & Birchfield, 1987; Schoof, 2006):

𝜕

𝜕𝑦

(
𝜂H 𝜕u

𝜕𝑦

)
− 𝜏c = −𝜌gH sin 𝛼 if |𝑦| < Wm, (6a)

u = 0 if |𝑦| ≥ Wm. (6b)

𝜂 is the vertically averaged viscosity, which depends on the strain rate and the flow parameter of ice:

𝜂 = A−1∕n

21∕n

||||𝜕u
𝜕𝑦

||||1∕n−1
, (7)

with A−1∕n = H−1 ∫ H+zb
zb

A−1∕ndz. The surface slope of the ice stream in downstream direction is given by
the angle 𝛼.

The location Wm where slip goes to zero is not known a priori and must be determined as part of the solution.
We assume a plastic rheology of the bed; that is, the bed yields and sliding occurs when the basal shear
stress equals the yield stress of the bed (Tulaczyk et al., 2000a). In a depth-integrated model, this leads to
the boundary conditions

𝜕u
𝜕𝑦

= 0 at𝑦 = 0, u = 𝜕u
𝜕𝑦

= 0 at|𝑦| = Wm. (8)

Note that the position Wm where the speed goes to zero does not exactly coincide with the position where
the ice ridge geometry transitions to the ice stream geometry (i.e., Wm > Ws).

The basal yield stress 𝜏c depends on the water pressure pw in the bed through the effective pressure N =
𝜌gH − pw (Tulaczyk et al., 2000b):

𝜏c = 𝜇N = 𝜇
(
𝜌gH − pw

)
, (9)

with 𝜇 a friction coefficient (Tulaczyk et al., 2000a). To determine 𝜏c, we need a model for pw or, equivalently,
for N that we obtain next by considering subglacial water transport.

2.2. Subglacial Water Transport
Water transport along the bed is described by an equation for conservation of mass (e.g., Flowers, 2015):

𝜕qx

𝜕x
+
𝜕q𝑦
𝜕𝑦

= .mb + 𝑗b, (10)
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with q = (qx, qy) the subglacial water flux (in m2 s−1), .mb the basal melt rate (in m s−1), and jb the water
flux entering the bed from the temperate ice (in m s−1).

Many different formulations for the subglacial drainage system are possible, which provide the necessary
conditions to link q to the water content of the bed (e.g., Elsworth & Suckale, 2016; Hewitt, 2011; Lingle
& Brown, 1987; Walder & Fowler, 1994). Models typically fall in two categories: distributed systems (Alley,
1989; Alley et al., 1986; Lliboutry, 1968; Walder, 1986; Walder & Fowler, 1994) and channelized systems
(Nye, 1976; Röthlisberger, 1972). We aim to keep our model as simple as possible, and we therefore assume
a distributed system following a Darcy-style flux law with transmissivity depending on effective pressure,

q𝑦 = −
kdhw

𝜂w

(
N0

N

)a
𝜕Φ
𝜕𝑦
, (11)

where

Φ = 𝜌wgzb − N + 𝜌gH (12)

is the hydraulic potential, kd the permeability, hw a reference sediment thickness, 𝜂w the dynamic viscosity
of water, N0 a reference effective pressure, and a > 0. For a = 3 this is qualitatively similar to the model
for flow through canals incised into the subglacial sediment derived by Walder and Fowler (1994). A sim-
ilar dependence of transmissivity on effective pressure is obtained if we (reasonably) assume permeability
is related to void fraction and use the relationship between void fraction and effective pressure found by
Tulaczyk et al. (2000a). We can thus understand (10)–(12) as a weakly drained model for till, which allows
both storage and drainage of water in the subglacial till layer.

We show below that observed bed permeabilities effectively correspond to the limit of an infinitely perme-
able bed. In this limit, (11) requires that the hydrological potential is constant (i.e., Φ = Φc =const.), and
the effective pressure becomes a function of the ice stream geometry only:

N = 𝜌wgzb + 𝜌gH − Φc for kd → ∞.

This illustrates how the existence of ice ridges and bed troughs can lead to a strengthening of the bed through
the dependence of the basal yield stress on the effective pressure.

As we are not resolving the downstream coordinate, we approximate the downstream flux divergence 𝜕qx∕𝜕x
by

𝜕qx

𝜕x
≈ −q0

(
N0

N

)a

, (13)

with the constant q0 determined as described below. In a model resolving variations in the downstream
direction, this constant would depend on the downstream potential gradient. The dependence on N reflects
the cross-stream variation of transmissivity, consistent with (11). Our symmetry conditions in the ice stream
and ice ridge centers require that the lateral boundary conditions are

q𝑦 = 0 at 𝑦 = 0 and q𝑦 = 0 at |𝑦| = W . (14)

The imposition of both of these conditions on (10) determines the constant q0 (i.e., the downstream flux
divergence must be such as to globally conserve mass). If q0 > 0, an abundance of meltwater is produced
across the ice stream, and it drains downstream. Conversely, if q0 < 0, water must be provided to the ice
stream bed from other sources—for example, from upstream regions or from a groundwater reservoir (e.g.,
Christoffersen et al., 2014).

We also require models for the basal melt rate .mb and the water flux from the ice jb. For the former, we
follow Lingle and Brown (1987) and assume that the geothermal heat flux qgeo, basal heat dissipation 𝜏cu,
and conductive cooling k 𝜕T∕𝜕z|+ contribute to the basal melt rate:

.mb = 1
𝜌wLh

(
qgeo + 𝜏cu + k 𝜕T

𝜕z
||||+
)
. (15)

In the next section, we determine the water flux from the temperate ice jb and the conductive heat flux into
the ice k𝜕T∕𝜕z|+.
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2.3. Energy Equation
Temperatures in the ice can either be below the melting point (T < Tm, “cold ice”) with zero moisture
content (𝜙 = 0), or at the melting point (T = Tm, “temperate ice”) with potentially a nonzero moisture
content (𝜙 ≥ 0). In general, heat transport can be by advection and diffusion. However, neglecting advection
and lateral diffusion, we can express steady-state energy conservation in cold ice by

−k 𝜕
2T
𝜕z2 = 𝜓 for T ≤ Tm, 𝜙 = 0, (16)

with k the thermal conductivity and 𝜓 the heat dissipation in the ice, which is given by the depth-integrated
mechanical model:

𝜓 = A−1∕n

21∕n

||||𝜕u
𝜕𝑦

||||(1+n)∕n
. (17)

The atmospheric temperature provides the surface boundary condition for the heat equation (16):

T = Ts at z = H + zb. (18)

We assume that the base of the ice is temperate throughout, including the ice ridge bed. Temperate ice might
form up to a height Hct < H above the bed. In this case, we require the temperature to be at the melting
point at z = Hct + zb with no heat flux across that boundary (see also Schoof & Hewitt, 2016). This leads to
the boundary conditions

T = Tmat z = zb if Hct = 0, (19a)

T = Tm and k 𝜕T
𝜕z

= 0 at z = Hct + zbif Hct > 0 (19b)

at the lower boundary of the cold ice, where the first case applies when there is no temperate ice immediately
above the bed.

For given 𝜓 , the model for ice temperatures (16)–(19) can be integrated straightforwardly, and we obtain
(Greve, 1997; Meyer & Minchew, 2018)

T(𝑦, z) =

⎧⎪⎪⎨⎪⎪⎩

Ts + (Tm − Ts)
s − z

H
+ 𝜓

2k
(s − z)(z − zb) if Hct = 0

Ts +
𝜓

k

[1
2
(

s2 − z2) − (s − z)(Hct + zb)
]

for z > Hct

Tm for zb ≤ z ≤ Hct

⎫⎪⎬⎪⎭ if Hct ≥ 0
,

(20)
with

Hct = max

[
0,H −

√
2k
𝜓

(Tm − Ts)

]
. (21)

If H, Ts, and 𝜓 are assumed to be known, then the extent of the temperate region can be directly estimated
from (21) (Meyer & Minchew, 2018).

In our model, 𝜓 and hence Hct depend on the transverse coordinate y. In the examples below that take
the temperature dependence of the rate factor into account, 𝜓 depends on T. For these solutions, we
iterate between solutions of the mechanical and thermodynamic models until convergence is reached.
Equation (20) also provides the conductive heat flux into the ice needed in the calculation of the basal melt
rate (15),

k 𝜕T
𝜕z

||||+ =
⎧⎪⎨⎪⎩

−
k(Tm − Ts)

H
+ 𝜓

2
H if Hct = 0

0 if Hct ≥ 0.
(22)
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2.4. Water Transport in the Ice
In temperate regions, additional heat dissipation leads to the formation of meltwater. This meltwater can be
transported along with the viscously compacting and deforming ice matrix and percolate through it (Fowler,
1984; McKenzie, 1984; Schoof & Hewitt, 2016). As before, we neglect advection and assume that the relative
moisture flux j in the ice is dominantly in the direction of gravity. Then the equations for mass and energy
conservation for the ice-water mixture can be simplified to

𝜌wLh
𝜕𝑗z

𝜕z
= 𝜓 for T = Tm, 𝜙 ≥ 0, (23a)

where Lh is the latent heat and jz is the vertical relative moisture flux. At the cold-temperate boundary, we
have no moisture flux, giving rise to the boundary condition

𝑗z = 0 at z = zb + Hct. (23b)

Again, for a given rate factor, it is straightforward to integrate (23a)–(23b), yielding

𝑗z = −(Hct + zb − z) 𝜓

𝜌wLh
for zb ≤ z ≤ Hct. (24)

Note that the moisture flux is negative: Water flows in the negative z direction toward the bed. Consequently,
the temperate ice contribution of water to the basal energy balance is jb = −jz(y, zb):

𝑗b(𝑦) = Hct
𝜓

𝜌wLh
. (25)

Notably, in steady state we can calculate this contribution without knowledge of properties of the temperate
ice region—in particular, without knowledge of the distribution of meltwater fraction𝜙 and permeability k𝜙
within the ice. However, our goal is to investigate how moisture content affects ice stream dynamics, which
requires us to turn to a model for moisture transport in the temperate ice.

We assume that water transport obeys Darcy's law:

𝑗z =
k𝜙
𝜂w

[
−(𝜌w − 𝜌)g +

𝜕pe

𝜕z

]
, (26a)

with k𝜙 the permeability of the temperate ice region, 𝜂w the dynamic viscosity of water, and g the acceleration
due to gravity. Knowing jz from (24), equation (26a) allows us to determine either the moisture content 𝜙
or the effective pressure pe in the ice, provided we know the other quantity. pe is the difference between ice
pressure (which is cryostatic) and water pressure in the ice (pe = 𝜌gH − pw). The first term in the brackets
of equation (26b) accounts for gravity-driven transport; the second accounts for transport due to pressure
gradients. Nonzero effective pressures in the temperate ice lead to compaction, described by the relationship
(Schoof & Hewitt, 2016)

pe = 𝜁𝜙
𝜕𝑗z

𝜕z
, (26b)

with 𝜁𝜙 the compaction viscosity. At the bed, the effective pressure in the ice is set by the effective pressure
in the bed:

pe = N at z = zb if Hct > 0. (27)

In equations (26a) and (26b) we have introduced two quantities that depend on the moisture content of the
ice: the permeability k𝜙 and the bulk viscosity 𝜁𝜙. Both are poorly constrained by experimental data, so we
draw on knowledge of related polycrystalline materials in Earth's mantle. These suggest a relationship of
the form k𝜙 ∝ 𝜙𝜈 , with 2 ≤ 𝜈 ≤ 3 (e.g., Rudge, 2018). In the absence of an empirical parametrization, we
follow the models by Nye and Frank (1973) and Hewitt and Schoof (2017) and assume

k𝜙 = kw𝜙
2. (28)

Note that there is significant uncertainty about the correct value of kw (as well as 𝜈), with values in the
literature ranging from kw = 10−12 m2 (Hewitt & Schoof, 2017) to kw = 5 × 10−8 m2 (Nye & Frank, 1973).
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One direct laboratory measurement of the permeability of temperate ice found k𝜙 = 10−18 m2 (Jordan &
Stark, 2001), but it is not clear at which meltwater content this value was obtained. At 𝜙 = 0.1% and using
k𝜙 = kw𝜙

2, this measurement would correspond to kw = 10−12 m2, the lower limit of values considered here.

The bulk viscosity describes the resistance of ice to compaction, and we expect less resistance with increasing
meltwater fraction (𝜕𝜁𝜙∕𝜕𝜙 < 0). Given that we have no empirical models for the compaction viscosity, we
follow Schoof and Hewitt (2016) and use

𝜁𝜙 = 𝜁0
𝜂

𝜙
, (29)

with 𝜁0 a constant and 𝜂 given by (7). We have confirmed that other models with a qualitatively similar
behavior do not substantially alter our conclusions. Indeed, we find that 𝜁𝜙 is relatively unimportant.

To solve this model, we prescribe the geometry and the center velocity of the ice stream uc = u(y = 0) in
addition to the model constants listed in Table 2. Equations (6)–(8) determine the across-stream velocity,
equations (10)–(15) determine the subglacial melt rates and water fluxes, and (16)–(29) determine englacial
temperatures and meltwater content. The center hydraulic potential Φc = Φ(y = 0) (or equivalently the cen-
ter effective pressure Nc = N(y = 0)) and the downstream flux constant q0 are parameters to be determined
as part of the solution. This is achieved by matching the lateral boundary conditions (8) and (14). Alterna-
tively, we could fix (say) Nc, and the model would determine the centerline velocity uc. We choose to fix the
quantities that are readily observable and use the model to determine quantities that are unknown.

3. Results
In this section, we present solutions to the model outlined above. We start with solutions in the absence of
thermo-mechanical coupling, assuming A = Ā0 = constant (section 3.1). We then analyze the properties of
the temperate ice region in detail (section 3.2) before considering the coupled system (section 3.3).

3.1. Ice Stream Dynamics Without Thermo-Mechanical Coupling
Without thermo-mechanical coupling, equations (2)–(25) can be solved independently of the temperate ice
dynamics. We start by assuming an infinite permeability of the bed (kd = ∞). This leads to a uniform
hydrological potential (Φ = Φc) and requires the effective pressure to follow the shape of the ice thickness
and basal topography (see equation (12)).

We solve (2)–(25) with Matlab ODE solvers. Solution of (2)–(25) with arbitrary choices of q0 and Φc will
generally not satisfy the lateral boundary conditions (8) and (14). We therefore use a Newton method to
determine q0 and Φc in such a way that the solutions of (2)–(25) satisfy these conditions.

To illustrate how the existence of ice ridges and/or topography leads to lateral confinement of ice streams,
we solve three different, idealized versions of shear margin B1 of Whillans Narrows shown in Figure 1:
one version with both topographic control and ice ridge (column 1 in Figure 3), one version with only the
topographic control but no ice ridge (column 2 in Figure 3), and one version without topographic control,
but with an ice ridge (column 3 in Figure 3). Rows a to f of Figure 3 show the temperature field, ice stream
velocity u, effective pressure N, melt rate, downstream flux divergence 𝜕qx∕𝜕x, and lateral water flux qy.
Black lines are solutions with an infinite permeability of the bed (kd = ∞); magenta dotted lines in column 1
are solutions with a finite bed permeability (kd = 2.5 × 10−18 m2).

In all three examples, a laterally confined ice stream forms with no slip at its sides and fast slip in the center
(Figures 3b1 to 3b3). This is as expected: The basal yield stress 𝜏c = 𝜇N (9) increases where the ice thickness
and/or the bed elevation increase (see equation (12)), leading to a strengthening of the bed under the ridge
and above the region of elevated basal topography. The rapidity of the transition from the fast velocity of the
ice stream to the slow velocity of the ice ridge depends on the bed topography and ice geometry: The largest
velocity gradients in the shear margin are attained for the example with only an ice ridge (column 3), while
the example with only a topographic control has the smallest lateral velocity gradients (compare Figures 3b1
to 3b3).

Note that in the examples with an ice ridge (columns 1 and 3), the point |y| = Wm where u goes to zero is dis-
tal to the point |y| = Ws of the ice stream-ridge transition. For example, in column 3, we find Wm = 29.4 km,
while we chose Ws = 27 km. This is a consequence of imposing the steady-state ice geometry; in a more
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Figure 3. Example solution for the shear margin at Whillans narrows (marked as B1 in Figure 2) for a temperature-
and meltwater-independent flow parameter Ā0 = 2.5 × 10−25 Pa−3 s−1. Black lines show solutions for infinite hydraulic
permeability (kd = ∞); magenta dotted lines show solutions for finite hydraulic permeability (kd = 2.5 × 10−18 m2).
Column 1 shows results with topographic control and ice ridge, column 2 shows results with only topographic control
(using only (2a) instead of (2) with Hc = 1,004 m), column 3 shows results for ice ridge only (using zb = −627.2 m
instead of (1)). Row a shows temperature fields in the ice. The cold-temperate boundary is marked by a bold green line;
gray shading indicates the bed. Row b shows velocity u, row c shows effective pressure N, row d shows melt rates
(dashed red line: moisture flux from the ice jb (25); dashed yellow line: melt rate at the bed .mb (15)), row e shows
downstream flux divergence 𝜕qx∕𝜕x, and row f shows lateral water flux qy (a positive water flux is toward the center of
the ice stream).

self-consistent model, we expect the ice thickness to adjust in response to changes in basal boundary con-
ditions (see, e.g., Haseloff et al., 2018). In our model, the relative locations of Wm and Ws ensure that all the
driving stress applied at the surface is balanced.

In the ice stream shear margin, where fast flow transitions to the stagnant ice ridge, a region of temperate
ice forms (Figures 3a1 to 3a3). This is consistent with previous work (Haseloff et al., 2015, 2018; Jacobson
& Raymond, 1998; Meyer & Minchew, 2018; Perol & Rice, 2015; Schoof, 2012; Suckale et al., 2014), even
though the mechanism by which the ice stream shear margin is localized in these earlier studies differs from
the mechanism considered here.

The shape and vertical extent of the temperate ice region depend on the way the shear margin is con-
trolled. The purely bed-controlled shear margin has a wider, shallower temperate ice region (Figure 3a2) in
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Figure 4. Sample solution of meltwater fraction and effective pressure in the temperate ice region for the
ridge-controlled case in Figure 3 with a permeability constant kw = 10−12 m2, other values as in Table 2. Panels a and b
show meltwater fraction and effective pressure in the temperate ice region. The cold-temperate boundary is marked
with the bold green line. Panels c and d show the meltwater fraction and effective pressure with height z at the point
where the temperate ice region has its maximum vertical extent (broken yellow line in panels c and d).

comparison to the purely ridge-controlled shear margin (Figure 3a3). The extent of the temperate ice region
Hct in (21) increases with increasing 𝜓 (17). Heat dissipation in the bed-controlled case is less localized,
which smooths out the temperate ice region.

Intuitively, we expect larger velocity gradients in the shear margin to also increase the water flux from the
ice to the bed. That is confirmed by the results shown in Figures 3d1 to 3d3, which show the moisture flux
from the ice jb as a dashed red line, the melt rate at the bed .mb as a dashed yellow line, and the combined
melt rate .mb + 𝑗b as a solid black line. The moisture flux jb is directly related to the height of the temperate
ice region Hct (see equation (25)); hence, the largest water flux is achieved in the ridge-controlled geometry.

The basal melt rate .mb is affected by heat dissipation in two ways: Heat dissipation in the ice itself reduces
the amount of conductive cooling experienced at the bed (22), and heat dissipation along the ice-bed contact
gives rise to the additional term 𝜏cu. Naturally, where the ice velocity is zero, no heat is dissipated, and
the basal melt rate is just the sum of geothermal heat flux qgeo and the conductive cooling k𝜕T∕𝜕z|+ =
k(Tm − Ts)∕H. Where temperate ice is present, there is no conductive cooling as k𝜕T∕𝜕z|+ = 0. Instead, the
ice effectively provides a meltwater source term through jb.

As most meltwater is produced in the shear margin, the subglacial water flow in the across-stream direction
qy is generally positive, that is, from the ice stream margin to the ice stream center (Figures 3f1 to 3f3). Under
the ice ridge where there is no heat dissipation, the water flux is close to zero, as the conductive cooling term
and the geothermal heat flux are almost matched.

The downstream flux divergence 𝜕qx∕𝜕x acts as an additional source or sink term in the energy balance. In
contrast to the lateral water flux, 𝜕qx∕𝜕x reflects the effective pressure profiles through (13) (Figures 3e1 to
3e3). The effective pressure increases from the ice stream center to the ice ridge, and therefore, the down-
stream flux is largest in the ice stream center and almost zero under the ice ridge. In the three examples
shown in Figure 3, the downstream flux divergence is positive, corresponding to excess meltwater being
exported downstream.

Our solutions so far have assumed that the hydraulic permeability kd of the bed is infinite. However, labo-
ratory and field measurements find pressure-dependent bed permeabilities in the range 10−19 to 10−13 m2

(Engelhardt et al., 1990; Leeman et al., 2016). To test the effect of a finite bed permeability, we use kd =
2.5 × 10−18 m2 and N0 = 1 MPa, as reported for till samples from Whillans ice stream (Leeman et al., 2016).
In our simple hydrological model, we find no discernible effect of having a finite bed permeability on the
temperature and velocity fields (dotted magenta lines in Figures 3a1 and 3b1). The only noticeable effect of
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Figure 5. Effect of thermo-mechanical coupling for permeability parameter kw = 10−8 (column 1), kw = 10−10 m2

(column 2), and kw = 10−12 m2 (column 3). Same plotting scheme as in Figure 3 and same geometric parameters as in
column 3 of Figure 3 (these solutions are plotted as dotted magenta lines). Note that the limits of the y axis of panel d3
differ from those in panels d1 and d2.

a finite hydraulic permeability is a reduction of the effective pressure beneath the ice ridge, where the effec-
tive pressure now adjusts to maintain the subglacial water fluxes necessary to balance meltwater production
(Figure 3c1). Notably, the effective pressure is still smallest in the ice stream center, corresponding to a max-
imum in the downstream flux divergence there (Figure 3e1). We conclude that taking the bed permeability
to be effectively infinite is a reasonable assumption in the ice stream cross section (finite permeability may
be important when considering downstream evolution).

3.2. Properties of the Temperate Ice Region
In the absence of thermo-mechanical coupling, the heat dissipation 𝜓 , viscosity 𝜂, effective pressure N, and
vertical extent of the temperate ice region Hct can be determined from the solution of the depth-integrated
model alone. Once these fields are known, the properties of the temperate ice region can be determined a
posteriori from vertical integration of (26a)–(29).

Figures 4a and 4b show an example of the meltwater fraction and effective pressure in the ice for the
ridge-controlled case, column 3 of Figure 3. For this example, we have assumed a permeability constant
of kw = 10−12 m2 and a viscosity constant of 𝜁0 = 1. The meltwater fraction (Figure 4a) increases gradu-
ally from the cold-temperate boundary (green line) toward the bed, up to a maximum value of about 3%.
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Figure 6. Maximum width of the temperate ice region (panel a), average porosities in the temperate ice at its
maximum vertical extent (panel b), maximum meltwater flux from the temperate ice region jb (panel c), and
width-averaged excess meltwater production Γ (equation (31), panel d) as function of the temperate ice permeability
parameter kw. Dashed lines show the solution with no water dependence of the rate factor.

At the bed, a slender, low-porosity region forms. The effective pressure in the ice mirrors this behavior, in
the sense that it decreases from the cold-temperate boundary toward the bed (Figure 4b), with a boundary
layer forming at the bed to match the effective pressure in the subglacial system.

As can be shown by an asymptotic analysis (Appendix A and Schoof & Hewitt, 2016), the meltwater fraction
and effective pressure in most of the temperate ice excluding the boundary layer at the bed and an additional
boundary layer close to the cold-temperate boundary originate from a purely gravity-driven moisture flux
(i.e., 𝜕pe∕𝜕z in equation (26a) can be neglected in this region). In other words, the negative buoyancy of the
liquid is balanced by Darcy drag in the pores. This leads to the following expressions for meltwater fraction
and effective pressure in the bulk of the temperate ice region:

𝜙 =
(

1 −
z − zb

Hct

)1∕2(
𝜓Hct

𝜌wLh

𝜂w

kw(𝜌w − 𝜌)g

)1∕2

, pe =
𝜓

𝜌wLh

1
𝜁𝜙

(30)

(see magenta lines in Figures 4c and 4d). Note that in the literature on magma dynamics, this is the
zero-compaction-length approximation (Spiegelman, 1993). For practical purposes, (30) means that the
meltwater content of the temperate ice region is largely unaffected by the subglacial drainage system and
the bulk viscosity. Instead, it is set by the permeability of the temperate ice and by the englacial heat
dissipation. We next investigate the effect of coupling these two by allowing the viscosity to depend on the
temperature and meltwater fraction in the ice.

3.3. Effect of Interstitial Meltwater Weakening
We model the effect of thermo-mechanical coupling by using the empirical fit (4), even though there is
substantial uncertainty in the dependence of the rate factor on meltwater fraction𝜙 in particular. We discuss
these limitations in section 4. Results are shown in Figure 5 for the ridge-controlled example of Figure 3 for
three different permeability constants kw of the temperate ice, as indicated above each column.

The immediate effect of lowering the permeability constant kw is a narrower temperate ice region with larger
vertical extent (panels 5a1 to 5a3). This focussing is due to higher meltwater content in the temperate ice.
A higher rate factor corresponds to weaker ice, and as the rate factor in the ice increases with increasing
meltwater content, we also expect it to increase with decreasing permeability.

Heat dissipation in the ice is altered by two competing effects: It decreases with a lower viscosity (larger A)
and increases with larger strain rates (see (17)). In warmer ice, strain rates in the ice increase because the
weakening of ice in the shear margin promotes deformation there (see panels 5b1–5b3; the dotted magenta
lines show the velocity profile for a constant rate factor as in Figure 3). The net effect of lowering the tem-
perate ice permeability is thus an increase in englacial heat dissipation, as can be seen from the melt rates
shown in panels 5d1–5d3. Note that the melt-rate axis in panel 5d3 is different. The sharp increase in local
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heat dissipation leads to a slightly larger lateral water flux from the ice stream margin to its center (panels
5f1–5f3) and an increase in the excess meltwater production (panels 5e1–5e3).

We systematically investigate the dependence of these properties on the permeability constant kw in Figure 6,
which shows the width of the temperate ice region (Figure 6a), the average meltwater fraction in the tem-
perate ice region (Figure 6b), the maximum meltwater flux from the temperate ice region (Figure 6c), and
the average downstream water flux (Figure 6d) as functions of kw. These quantities remain nearly constant
for permeabilities larger than 10−9 m2. In this limit (effectively the limit of kw → ∞), the permeability is
large enough to drain nearly all meltwater from the temperate ice region, leading to average porosities of
less than 0.5%. Note that the average meltwater fraction in the temperate ice does not go to exactly zero, as
the slender boundary layers at the bottom and top of the temperate ice region have nonzero porosities even
in the limit of large permeabilities. This explains the difference to the case where we only account for the
temperature dependence of the viscosity (i.e., A = A(T, 𝜙 = 0), red dashed line in Figure 6).

For decreasing permeabilities, the average meltwater fraction in the temperate ice region increases up to
approximately 8% for kw = 10−12 m2. This explains the pronounced weakening we observe in the examples
in Figure 5: At a meltwater fraction of 8%, equation (4) predicts a rate factor of A = 4.89 × 10−23 Pa−3 s−1,
which is 20 times larger than the rate factor for temperate ice with zero meltwater content.

The increase in meltwater production in the shear margin with decreasing temperate ice permeability
(Figure 6c) does not only lead to a shift in the location of heat dissipation. It also increases the total amount
of heat dissipated across the width of the ice stream, as is illustrated by the increase in the width-integrated
downstream flux divergence Γ (Figure 6d),

Γ = 1
W ∫

0

−W

𝜕qx

𝜕x
d𝑦 = 1

W ∫
0

−W

( .mb + 𝑗b
)

d𝑦, (31)

which provides a measure for the excess meltwater production of the ice stream. Hence, we see a link
between the global ice stream energy balance and the permeability of the temperate ice region, which is
controlled by processes at the grain scale.

4. Discussion and Conclusions
We have investigated how the viscous coupling between the meltwater content of temperate ice and the
ice mechanics alters the energy balance of ice streams. We find that the formation of temperate ice with
a nonzero meltwater content weakens the ice locally and focuses lateral shear in the margin, consistent
with observations of ice stream shear margins (Figure 1). This substantially increases heat dissipation there.
This effect is an extension of the well-known weakening of ice in ice stream shear margins through the
temperature-dependence of the viscosity (e.g., Suckale et al., 2014).

The most important consequence of this strain localization is an increase in the meltwater contribution from
the temperate ice region to the basal meltwater budget. In the example of the Whillans-like margin consid-
ered here, this leads to an increase in average excess meltwater production of up to 14%. The magnitude of
this effect is mainly controlled by the permeability of the temperate ice region and the water dependence of
the viscosity.

The lack of a reliable physical model or empirical parametrization for the permeability of temperate ice
introduces the largest source of uncertainty in our study. Existing models typically propose a relationship
of the form k𝜙 = kw𝜙

2 with values for kw ranging from 10−12 to 5 × 10−8 m2 (Hewitt & Schoof, 2017; Nye &
Frank, 1973). Analogies of water flow in temperate ice to magma flow in the mantle suggest that the grain
size plays a crucial role in controlling kw. The value of kw = 5 × 10−8 m2 by Nye and Frank (1973) is based
on a grain-size estimate of d = 10−2 m, which is consistent with values found in some ice cores (Cuffey &
Paterson, 2010). However, the high temperatures and strain rates in ice stream shear margins likely favor
dynamic recrystallization processes, which produce smaller grain sizes. It is therefore conceivable that the
permeability by Nye and Frank (1973) is an overestimate.

Our results indicate that the range of possible values of kw from 10−12 to 10−8 m2 suggested in the literature
covers an extreme range of behaviors: At kw = 10−8 m2 effectively all meltwater is drained immediately,
leading to vanishing meltwater content in most of the temperate ice region (excluding narrow boundary
layers at the top and bottom of the temperate ice region). In this limit, the effects of meltwater content on
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ice stream dynamics are negligible. Conversely, for kw = 10−12 m2, the average meltwater content of the
temperate ice region is approximately 8%, far beyond the range of existing data for the rate factor A(T, 𝜙)
(Duval, 1977).

Further reduction of the englacial permeability coefficient kw leads to further localization of the temperate
ice region and higher porosities. This is unlikely to be realistic, and we expect lateral heat transport and
the development of a more efficient englacial meltwater system (e.g., through a transition from a quadratic
to a cubic dependence of the permeability on meltwater fraction Rudge, 2018) to eventually counteract
continued localization.

In addition to uncertainties in the permeability of temperate ice, which controls the meltwater content
directly, uncertainties in the dependence of the rate factor on the meltwater content also affect our results.
Both the viscosity and the heat dissipation depend on the rate factor. Existing data for the dependence of the
rate factor on the meltwater content is limited to porosities of less than 1%, but in our study we extrapolate a
proposed linear relationship between the rate factor and the meltwater content to bulk porosities of 8%. It is
likely that this relationship does not remain valid at such high porosities, but an assessment of the induced
error is not possible without better experimental constraints on the rate factor. Additionally, there might be
other processes affecting the development of viscosity of ice in ice stream margins. These include grain-size
reduction, macroscopic damage, crystal fabric development, the existence of impurities, or a change in the
strain-rate dependence of the viscosity (Goldsby & Kohlstedt, 2001; Minchew et al., 2018).

While the permeability and the rate factor of temperate ice are crucial in determining the role temperate ice
plays in the ice stream energy balance, compaction of ice (through the bulk viscosity of ice) and the water
content of the bed play only minor roles. Their impacts are confined to small boundary layers at the top and
bottom of the temperate ice region. This implies that drainage of meltwater from the temperate ice region
is well described by the balance of buoyancy and Darcy drag. This simplifies the solution of the underlying
equations, as the dependence on the effective pressure in the ice can be neglected.

As the focus of our study is on the effect of interstitial meltwater weakening, we have chosen to represent
subglacial hydrology in as simple a manner as possible, assuming a Darcy-style flux in the direction of gradi-
ents of the hydraulic potential with a transmissivity depending on effective pressure. However, observations
suggests that complex drainage networks are likely to exist at ice stream beds (Blankenship et al., 1986, 1987;
Engelhardt & Kamb, 1997; Gray et al., 2005; Fricker et al., 2007; Kamb, 2001), which our model cannot cap-
ture. In particular, as we only resolve the across-stream dimension, we cannot infer how the injection of
substantial amounts of meltwater in the ice stream margin might affect the development of the subglacial
drainage system in the downstream direction, for instance through the formation of a Röthlisberger channel
(Elsworth & Suckale, 2016; Meyer et al., 2018; Perol et al., 2015; Röthlisberger, 1972). In our model effective
pressure and downstream drainage are controlled by topography and ice geometry, rather than by the loca-
tion of meltwater injection. This suggests that it is important to take these properties into account in studies
of ice stream subglacial drainage.

We have neglected the effect of advection on the temperature field. However, the elevation difference
between ridge and stream drives lateral inflow of cold ice into the ice stream. This may counteract the
effect of shear heating and even lead to the elimination of the temperate region (Haseloff et al., 2018;
Jacobson & Raymond, 1998; Suckale et al., 2014). Here, we investigate the magnitude of this effect for the
ridge-controlled case shown in Figure 33.

One challenge of modeling lateral advection is that the calculation of the velocity field in the ice stream cross
section requires modeling or parametrizing downstream advection of ice in the ice stream mass balance. If
downstream transport is not accounted for, the ice stream thickens at a rate determined by the inflow of mass
from the sides. This leads to an unrealistic upward motion of ice in the ice stream, skewing the temperature
field.

In Appendix B, we present an analytical approximation for the in-plane velocity field without thermo-
mechanical coupling (i.e., A =constant). To derive this approximation, we calculate the in-plane veloci-
ties from the “shallow” models underlying the assumed thickness profiles for the ice stream and ice ridge
(2). This simple approximation cannot capture the narrow transition between these two flow regimes—this
would require resolving the full Stokes flow (Haseloff et al., 2015). Instead, we linearly interpolate the veloc-
ities between Wm (the sliding onset) and Ws (the geometric stream-ridge boundary). The resulting velocity
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Figure 7. Effect of lateral advection of ice on temperate ice formation. Panel a: Downstream velocity is determined
from solution of the two-dimensional Poisson's equation for u (B4). Panels b and c: In-plane velocities are from the
analytical expressions (B7) and (B8) (see Appendix B for details). Panels d and e: Temperature fields are solutions of the
two-dimensional heat equation (B1) with (d) and without (e) advection of ice. Red line: T = 0 contour from solution of
extended heat equation (B1), green dashed line: T = 0 contour obtained from solution of (16).

fields are shown in Figures 7b and 7c. They are used to solve the two-dimensional heat equation (B1) with
the finite-element solver Elmer/Ice (Gagliardini et al., 2013); see Figure 7e.

In the model with advection, the onset of the temperate ice region is slightly more gradual, and its maximum
extent is shifted toward the ice stream (Figure 7e). Nevertheless, the change to the temperate ice region is
subtle, suggesting that the weakening effects described above will be important in the presence of lateral
advection of ice, too.

As well as in-plane advection terms, the solution to the full heat equation (B1) also includes lateral diffusion
and a slight correction to the shear heating compared to our original model. The correction is due to vertical
shear because the downstream velocity is now determined from solution of the two-dimensional Poisson's
equation (B4); see Figure 7a. Including these terms is common in models for ice stream shear margins (e.g.,
Haseloff et al., 2015, 2018; Jacobson & Raymond, 1998; Suckale et al., 2014). To see the effect of these extra
terms, we compare in Figure 7d the solutions to the heat equation (B1) for v = w = 0 with the simplified
heat equation (16). There is reasonable agreement with the earlier model, which slightly underestimates the
extent of the temperate ice region.

Several existing studies investigate the link between heat dissipation in ice stream shear margins and sub-
glacial drainage in the absence of coupling between meltwater content of temperate ice and the viscosity of
ice. Apart from taking into account this coupling, our approach differs from these studies by additionally
accounting for the meltwater flux from the ice into the bed and by taking the lateral water flux into account
(Beem et al., 2010; Christoffersen et al., 2014; Perol & Rice, 2015; Perol et al., 2015; Raymond, 2000). This
allows us to investigate how the properties of the temperate ice region change the global energy balance of
the ice stream.

Our approach also differs from existing studies through the mechanism that confines the ice stream flow:
Instead of either prescribing a subglacial channel in the ice stream shear margin (Perol & Rice, 2015) or
relying on the formation of a thermal boundary in ice stream margins (Haseloff et al., 2015, 2018; Schoof,
2012), we explicitly focus on ice streams that are hydrologically confined by their basal topography or by an
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ice ridge (the latter also stabilize ice streams in Kyrke-Smith et al., 2014). Our results illustrate how each of
these conditions in isolation, as well as in combination, is able to explain the existence of laterally confined
ice stream flow. Both ice ridges and bed troughs are present in parts of the Siple Coast (Fretwell et al., 2013),
though often in more complex forms than modeled here, as the example of MacAyeal ice stream in Figure 1c
illustrates.

As is common for many studies of ice stream shear margins, we have focused on idealized, steady-state
profiles. However, the dynamic history of the Siple Coast region is well documented (Catania et al., 2006,
2012; Conway et al., 2002; Fahnestock et al., 2000; Echelmeyer & Harrison, 1999; Hamilton et al., 1998;
Hulbe & Fahnestock, 2007; Retzlaff & Bentley, 1993; Stephenson & Bindschadler, 1988; Stearns et al., 2005).
Hence, we cannot expect to explain all observable properties of the Siple Coast velocity profiles. For example,
it is conceivable that remnant temperate ice regions might explain the strong focussing seen in the margins
of MacAyeal ice stream (see Figure 1). For this profile, the steady-state model presented here either predicts
no temperate ice in the margin (when adapting the bed profile (1)) or predicts a much narrower ice stream
with a temperate margin (using the observed bed profile across the margin marked as E2). This highlights
the need to better understand the role of topography and the unsteady, three-dimensional dynamics not
captured in our model.

Appendix A: Leading-Order Balance in the Temperate Ice Region
To understand the behavior of meltwater fraction and effective pressure in the temperate ice region, we
assume a constant rate factor A and nondimensionalize equations (26a)–(27) by setting pe = Np∗

e , j =
(𝜓Hct)∕(𝜌wLh)j*, and z = zb + Hctz*. Then the model can be written as

1 − z∗ = 𝜅𝜙𝜈
[

1 − 𝛼
𝜕p∗

e

𝜕z∗

]
, p∗

e = 𝛽𝜙, (A1)

with the boundary condition

p∗
e = 1 atz∗ = 0 (A2)

and the nondimensional location-dependent groups

𝛼(𝑦) = N
Hct(𝜌w − 𝜌)g

, 𝛽(𝑦) = 𝜓

𝜌wLh

1
N𝜁0𝜂

, 𝜅(𝑦) =
𝜌wLh

𝜓Hct

k0

𝜂w
(𝜌w − 𝜌)g.

Typical values of the parameters can be estimated from the solutions of the model without thermo-
mechanical coupling, which gives

10−2 ≲ 𝛼 ≲ 1, 𝛽 ≲ 10−2, 5 × 107 ≲ 𝜅 ≲ 5 × 1010,

with the lower values for 𝛼 and 𝛽 applying at the maximum extent of the temperate ice region and the upper
values applying at the edges. Neglecting 𝛼𝜕p∗

e∕𝜕z∗, (A1)–(A2) yield the dimensionless form of (30):

𝜙 =
(1 − z∗

𝜅

)1∕𝜈
, p∗

e = 𝛽

(
𝜅

1 − z∗

)1∕𝜈

. (A3)

Appendix B: Extended Model
Here we present an extended model for the energy equation and the velocity. This model is used to confirm
the results of the depth-integrated model presented in the main text and to illustrate the effect of lateral
advection of ice on the temperature field. All calculations are done with a constant rate factor A.
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B1. Heat Equation
In the presence of in-plane advection and diffusion, the energy equation is

𝜌cp

(
v𝜕T
𝜕𝑦

+ w𝜕T
𝜕z

)
− k∇2T = 𝜓 for T ≤ Tm, 𝜙 = 0, (B1a)

where ∇ = (𝜕∕𝜕y, 𝜕∕𝜕z) operates in the y − z plane. Boundary conditions have to be applied at the
cold-temperate transition, at the ice surface and base, and at the lateral sides of the geometry. At the
cold-temperate transition, we require continuity of mass, energy, and momentum, leading to

u|+ = u|−, T|+ = T|−, [
𝜏i𝑗n𝑗 − p𝛿i𝑗

]+n𝑗 =
[
𝜏i𝑗n𝑗 − p𝛿i𝑗

]−n𝑗 ,−k∇T|− · n̂ = 0. (B2a)

The other boundary conditions remain unchanged.

Typically, models for ice stream shear margins take both lateral and vertical shear in the heat dissipation
term into account (e.g., Haseloff et al., 2015, 2018; Jacobson & Raymond, 1998; Perol et al., 2015; Suckale
et al., 2014):

𝜓 = A−1∕n

21∕n

(||||𝜕u
𝜕𝑦

||||2 + ||||𝜕u
𝜕z

||||2
) 1+n

2n

. (B3)

Including the vertical strain rate 𝜕u∕𝜕z requires us to extend the model for the downstream velocity.

B2. Downstream Velocity and Heat Dissipation
In a depth-resolving model, u is determined from

𝜕

𝜕𝑦

(
𝜂
𝜕u
𝜕𝑦

)
+ 𝜕

𝜕z

(
𝜂
𝜕u
𝜕z

)
= −𝜌g sin 𝛼 (B4)

with the viscosity

𝜂 = A−1∕n

21∕n

[||||𝜕u
𝜕𝑦

||||2 + ||||𝜕u
𝜕z

||||2
] 1−n

2n

. (B5)

The basal boundary conditions (8) are replaced by

𝜏xz = 𝜏c
u|u| , |u| > 0, for |𝑦| < Wm, z = 0,

|𝜏xz| ≤ 𝜏c, u = 0, for Wm < |𝑦| < W , z = 0.

Note that the viscosity (B5) and heat dissipation (B3) only include contributions of the downstream velocity
u. An analysis of the scales in ice streams and their margins shows that the other contributions are negligible
(Haseloff et al., 2015).

B3. In-Plane Velocities
For a flat bed, we can integrate (2) to obtain for the ice thickness

H =
⎧⎪⎨⎪⎩

Hc = const. for |𝑦| ≤ Ws[
H2+2∕n

c + 2
[
(n + 2) .a
2Ā0(𝜌g)n

]1∕n [
(W − Ws)1+1∕n − (W − |𝑦|)1+1∕n]]n∕(2n+2)

for Ws ≤ |𝑦| ≤ W .

For the purpose of inclusion in the heat equation, we adopt the following approximations to the velocity
field, consistent with the above expression for the ice thickness:

u =
⎧⎪⎨⎪⎩

uc

[
1 −

( |𝑦|
Ws

)n+1
]

for |𝑦| ≤ Ws

0 for Ws ≤ |𝑦| ≤ W .

Assuming w = 0 at z = zb and w = − .a at z = zb +H, the steady-state depth-integrated mass conservation is

𝜕

𝜕𝑦
(Hv̄) = .a − 𝜕

𝜕x
(Hu), (B6)
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where v̄ is the depth-averaged across-stream velocity. The lateral boundary conditions are

v̄ = 0 at 𝑦 = 0,±W .

From (B6), we obtain

v̄(𝑦) =
.a

H

⎧⎪⎪⎨⎪⎪⎩
𝑦 − 𝑦 W

Ws

n + 2
n + 1

[
1 − 1

n + 2

( |𝑦|
Ws

)n+1
]

for |𝑦| ≤ Ws

− (W − |𝑦|) 𝑦|𝑦| for Ws ≤ |𝑦| ≤ W .

In the ice stream, we have v = v̄. In the ice ridge, we assume a shallow ice profile for v (consistent with our
geometric assumptions), so that we obtain

v =
⎧⎪⎨⎪⎩

v̄ for |𝑦| ≤ Ws

v̄ (n + 2)
(n + 1)

[
1 −

(
1 − z

H

)n+1
]

for Ws ≤ |𝑦| ≤ W .
(B7)

Given u and v, we can determine w from integrating the mass balance equation (∇ · u = 0). This yields

w=− .a

⎧⎪⎪⎨⎪⎪⎩

𝜁 for |𝑦| ≤ Ws

n + 2
n + 1

[
𝜁 − [1 − (1 − 𝜁 )n+2]

n + 2

]
+ n+2

n+1

[
(n + 2)

2Ā0(𝜌g)n

]1∕n .a1∕n

H2+2∕n (W − |𝑦|)1+1∕n𝜁
[
1−(1−𝜁 )n+1] ,

for Ws ≤ |𝑦| ≤ W

(B8)

with 𝜁 = z∕H(y). v and w are discontinuous at |y| = Ws. To obtain smooth velocity profiles, we define the
first and second cases of (B7) and (B8) as vs, vr , and ws, wr , respectively (for “stream” and “ridge”), and
interpolate by writing

v = 𝑓vr + (1 − 𝑓 )vs and w = 𝑓wr + (1 − 𝑓 )ws (B9)

with

𝑓 =

⎧⎪⎪⎨⎪⎪⎩
0 for |𝑦| ≤ Ws|𝑦| − Ws

Wm − Ws
for Ws ≤ |𝑦| ≤ Wm

1 for |𝑦| ≥ Wm.

Wm is the location of sliding onset.
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